
Genetic studies of human disease seek insight into disease 
processes or novel therapies from naturally occurring 
heritable variation in a population. Characterizing the 
degree to which disease-informative variants exist, 
identifying them and their effects, and understanding 
how they might guide preventive or therapeutic inter-
ventions are thus related but distinct goals of genetic 
association studies.

Type 2 diabetes mellitus (T2D) is a complex, herit
able disease with a sibling relative risk of approximately 
2 (REF. 1) and a heritability estimated at 30–70%2. For dec-
ades, analyses of natural genetic variation have been used 
to understand T2D mechanisms or to improve prognoses 
for the approximately 415 million people who suffer from 
its effects; these include prolonged hyperglycaemia from 
insulin resistance and relative insulin deficiency3, numer-
ous micro- and macrovascular complications4 and an 
increased risk of early death5. 

Before common variant genome-wide association 
studies (GWAS), it was not known to what extent 
such ‘experiments of nature’ could lend insight into 
T2D. Early genetic mapping studies for T2D involved 
comparatively small-scale candidate gene and linkage 
studies. Although these approaches localized several 
disease genes (for example, PPARG6, KCNJ11 (REF. 7) and 
TCF7L2 (REF. 8)), they were on the whole unsuccessful9. 
By contrast, GWAS yielded — for the first time — a sub-
stantial number of genomic loci reproducibly linked to 
T2D risk, suggesting previously unsuspected biological 
pathways10,11. And yet, the modest fraction of heritability 
attributable to GWAS associations, together with insuf-
ficient resolution to identify specific causal variants or 
effector transcripts, led to suggestions that the endeavour 
produced minimal insights12,13.

In the era that has followed these early GWAS, studies 
have become much larger and more diverse, technologies 
assay rarer variants across the entire exome or genome, 
and biological experiments have begun to translate 
reported associations to insights into causal variants 
and disease processes. Here, we review the history and 
recent progress towards mapping genes for T2D and con-
sequent implications for disease genetic architecture. We 
then review studies to understand pathogenic mechan
isms that may point to new therapeutic modalities. We 
argue that future research into each area will be most 
powerful and synergistic with a new model for open and 
interactive sharing of data and results between previously 
loosely coupled communities.

Mapping disease loci
Common variant association studies. Motivated by 
the increased power of association studies over prior 
family studies14, as well as the common disease common 
variant hypothesis (CDCV hypothesis)15, GWAS exploited 
inexpensive single-nucleotide polymorphism (SNP) 
microarrays and reference catalogues of population-level 
variation16 to analyse through linkage disequilibrium nearly 
all common variants in the genome. The first T2D GWAS, 
which studied a few thousand samples each17–21, collec-
tively identified 10 genomic loci, and many loci were 
reported by multiple studies. These findings validated 
the GWAS design but suggested that common variants 
of large effects were mostly absent from the population: 
all associated variants affected risk by less than 40%, and 
most affected risk by closer to 15%.

In order to identify common variants of weaker 
effects, collaboration and data sharing were necessary to 
increase power (FIG. 1). The Diabetes Genetics Replication 
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Heritability
The proportion of phenotypic 
variance in a population owing 
to genetic differences, as 
opposed to environmental 
differences.

Type 2 diabetes: genetic data sharing 
to advance complex disease research
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Abstract | As with other complex diseases, unbiased association studies followed by physiological 
and experimental characterization have for years formed a paradigm for identifying genes or 
processes of relevance to type 2 diabetes mellitus (T2D). Recent large-scale common and rare 
variant genome-wide association studies (GWAS) suggest that substantially larger association 
studies are needed to identify most T2D loci in the population. To hasten clinical translation of 
genetic discoveries, new paradigms are also required to aid specialized investigation of nascent 
hypotheses. We argue for an integrated T2D knowledgebase, designed for a worldwide 
community to access aggregated large-scale genetic data sets, as one paradigm to catalyse 
convergence of these efforts.
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Genome-wide association 
studies
(GWAS). An approach for 
genetic mapping that 
compares frequencies of 
variants across the genome 
between disease cases and 
matched controls. This is a 
paradigm for identifying genes 
or biological processes that 
are relevant to a phenotype 
by identifying correlations 
between polymorphic genetic 
markers and the presence of 
the phenotype.

and Meta-analysis (DIAGRAM) Consortium increased 
sample size above 10,000 (with approximately 4,500 T2D 
cases), identifying a further six loci22. Enabled by a willing-
ness of researchers to collaborate rather than to compete, 
an availability of resources and tools to harmonize data 
sets23 and a means to share statistics while protecting study 
participants24, GWAS meta-analysis consortia quickly 
became the standard for T2D and other complex traits25,26. 
The second DIAGRAM analysis included 45,000 samples 
(approximately 8,100 cases), identifying 12 additional 
T2D loci27, whereas other consortia analysed quantitative 
glycaemic traits28 and other T2D‑relevant phenotypes29–31 

in either overlapping samples or more diverse ethnic 
groups32–34. The similar goals, organization and method-
ology of these consortia, as well as of those investigating 
other metabolic traits, led to the joint design of a custom 
genotyping array35 that facilitated analysis of still larger 
sample sizes. A T2D association study used this array to 
analyse almost 150,000 individuals (approximately 34,800 
cases) and identified ten further loci36, whereas a glycae-
mic trait association study with over 133,000 individuals 
led to a similar number of discoveries37. GWAS thus cata-
lysed a clear breakthrough in the identification of genomic 
loci reproducibly associated with disease.

Figure 1 | The history of T2D GWAS. Over the years, type 2 diabetes mellitus (T2D) genome-wide association studies 
(GWAS), which typically consist of a two-stage discovery and replication study design, have increased in size and 
diversity. Plotted are circles representing T2D GWAS, as specified by the US National Human Genome Research 
Institute–European Bioinformatics Institute (NHGRI–EBI) GWAS catalogue163, as well as additional candidate gene or 
sequencing studies of note. The x‑axis shows the year of publication, whereas the y‑axis shows discovery sample size. 
The inner (darker) circles are also scaled in proportion to discovery sample size, whereas the outer (lighter) circles are 
scaled in proportion to total (discovery + replication) sample size. Circles are coloured according to ethnic composition 
of the sample set: African American (dark blue), East Asian (light blue), European (purple), Hispanic or Native American 
(yellow) or South Asian (green). PubMed identifiers (or first author name) for each study are shown at the base of the 
figure and connected to the corresponding circle with a dotted line. Identifiers are coloured according to the technology 
used in the study: linkage or candidate gene studies (red), GWAS or Metabochip (beige), exome array (orange) or 
sequencing (dark grey). Additionally, T2D loci are listed directly above the first reporting study. With some exceptions 
based on retrospective knowledge, a P value of 5 × 10−8 is used as a threshold for significance, and loci are named as 
originally reported. 
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Causal variants
Specific mutations underlying 
the molecular cascade that 
produces a phenotypic trait; 
by design, in most genetic 
mapping studies, the 
associated genetic marker is 
merely correlated with the 
underlying causal variant.

Effector transcripts
The specific RNA transcript 
(for example, mRNA 
transcribed from a gene) 
for which the function or 
expression is altered by the 
causal variant, leading to a 
phenotypic difference.

Genetic architecture
The number, frequencies and 
effects on disease of genetic 
variants in a population.

Common disease common 
variant hypothesis
(CDCV hypothesis). The 
hypothesis that, owing to 
historical human population 
growth, some disease loci 
for common diseases may 
harbour alleles common in 
the population.

Linkage disequilibrium
Correlations among nearby 
variants, owing to historical 
patterns of demography and 
recombination, exploited by 
genome-wide association 
studies to map common 
variant associations.

Glycaemic
Traits pertaining to the 
physiology of blood glucose 
regulation, usually involving 
measures of glucose, insulin 
or other related hormones.

Rare variant models
A model of genetic architecture 
in which rare variants (for 
example, those with a 
frequency <1%) explain 
most of the heritability.

Synthetic associations
A hypothesis based on 
simulations that multiple 
causal rare variants of strong 
effects might cause a common 
variant statistical association.

Common variant models
Models of genetic architecture 
in which common variants 
(for example, those with a 
frequency >1%) explain most 
of the heritability.

Models for the genetic architecture of T2D. Despite the 
successes described above, the use of GWAS findings 
was debated, as the identified associations explained less 
than 10% of T2D heritability38. Whereas GWAS propo-
nents cited previously unsuspected disease processes 
implicated by newly identified associations39, counter-
arguments stated that modest-effect common variants 
offered little value towards understanding or predicting 
disease13 and might even be misleading if caused, in fact, 
by distant rare variants40 or population artefacts12. Using 
qualitative arguments12,41 or simulations40,42, many argued 
for future studies of rare variants, which were expected 
from evolutionary arguments to have much larger effects 
on disease risk12,41 and potentially to explain much of 
disease heritability38.

However, closer analysis of GWAS results revealed that 
evidence for rare variant models was far from conclusive. 
Simulations suggesting that rare variants (or synthetic 
associations) might explain many GWAS signals40,43 were 
countered by empirical examples inconsistent with that 
model. These included an absence of linkage signals44, 
a common-shifted distribution of GWAS variant frequen-
cies45 and replicated associations across populations46. 
Furthermore, new methods for estimating heritability 
from all variants analysed in a GWAS, rather than only 
those reaching significance, suggested that common 
variants might explain more than half of T2D herit
ability, leaving hundreds or thousands of smaller-effect 
associations to be detected36,47.

This collection of analyses, examining similar data, 
thus offered contrasting models for the genetic architec-
ture of T2D. In fact, a comprehensive simulation-based 
analysis suggested that, before 2012, T2D genetic 
studies and epidemiological parameters were consist-
ent with either rare variant or common variant models48. 
Adjudicating between them required higher resolution 
studies to interrogate variants across the entire frequency 
spectrum.

Rare variant association studies. The first study to 
investigate the contribution of lower-frequency (<5%) 
variants to T2D or related traits appeared in 2012, when 
coding variant analysis in 8,229 individuals (using the 
Illumina exome array) identified five low-frequency vari
ants associated with glycaemic traits (three at previously 
unidentified loci)49. Shortly thereafter, an exome sequen
cing study in 2,000 Danes (with 1,000 cases) identified two 
T2D-associated common coding variants at previously 
unidentified loci, although no low-frequency variants 
were identified50. In 2014, a genome sequencing study of 
2,630 Icelanders, followed by statistical imputation of vari
ants into 278,554 additional Icelanders, identified three 
more T2D‑associated low-frequency variants51, all within 
loci that had previously been reported for T2D or related 
traits. Together with several studies that followed for 
T2D52, glucose53,54 or insulin levels55, these reports demon-
strated the ability of exome- or genome-wide analyses to 
identify lower-frequency variants relevant to T2D.

In parallel, candidate gene experiments were also 
successful, in limited contexts, at identifying broader 
allelic series within genes initially implicated through 

common variants in T2D. An analysis of rare variants in 
MTNR1B demonstrated a strong effect of functional vari
ants (according to a series of molecular or cellular assays) 
on T2D risk; non-functional variants had comparatively 
weaker effects56. A similar pattern was observed for rare 
variants in PPARG57. In SLC30A8, rare variants predicted 
to cause protein truncation were associated with protec-
tion from T2D58, which contrasted with expectations from 
previous animal59 or cellular work60. The contribution of 
these variants to T2D heritability, however, was small.

Deciphering genetic architecture through larger-scale 
sequencing studies. Although these newly reported 
associations were valuable, the extent to which they 
supported rare or common variant genetic architec-
tural models for T2D was left unanswered. Analysis 
of the 2,000 Danish exomes rejected extreme models, 
with T2D explained by a small number (<20) of large-
effect, low-frequency, non-synonymous variants61, but 
the power was insufficient for further conclusions. To 
characterize T2D genetic architecture to a much higher 
resolution, a more comprehensive set of sequencing 
studies was designed, spanning 12,940 multi-ethnic 
exome sequences (6,504 cases) with low-frequency 
variants genotyped in 79,854 additional individuals 
(28,305 cases), as well as 2,657 whole-genome sequences 
(1,326 cases) with all variants imputed into 44,414 addi-
tional individuals (12,971 cases)62. Strikingly, only a 
single low-frequency variant, which had been previously 
reported in the Icelandic sequencing study, was associ-
ated with T2D at genome-wide significance, despite high 
power to detect low-frequency variants of even mod-
erate effect. These results suggested that low-frequency 
variation — and coding variation of any frequency — 
has, at most, limited roles in the genetic architecture 
of T2D. Consequently, larger common-variant GWAS 
would probably continue to identify additional T2D loci, 
whereas rare variant association studies would require 
comparatively much larger sample sizes48,63,64.

Indeed, larger GWAS meta-analyses have continued 
to expand the number of T2D‑associated loci. A 2014 
trans-ethnic meta-analysis of more than 110,000 indi-
viduals (approximately 26,500 cases), which was moti-
vated by a consistency of common variant associations 
observed across different populations46, identified seven 
new loci65, whereas analysis of almost 160,000 European 
individuals (approximately 26,700 cases) subsequently 
identified 18 more66. GWAS of previously unstudied 
populations, such as Mexicans67, African Americans68 
or the Inuit69, have also yielded new associations, in many 
cases because different population histories have led to 
different allelic spectra and consequent gains in power. 
Conversely, even in larger samples (that is, >232,000 
individuals, approximately 56,600 cases), coding vari-
ant analyses have identified few associations with low-
frequency variants70. These findings, together with new 
methods to assess polygenicity from GWAS71 and excess 
concordance observed for even nonsignificant common 
variant associations across ancestries65, continue to sup-
port a common variant model for the larger fraction of 
T2D genetic architecture.
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Imputation
A technique to infer the 
unknown genotype of a variant 
in an individual based on 
correlations with nearby 
genotyped variants.

Allelic series
A number of alleles of a gene 
or locus with a range of 
phenotypic and/or molecular 
effects that are of use to infer 
a genetic–phenotypic 
dose–response curve.

Polygenicity
An idealized model in which a 
phenotype is caused by a large 
number of variants, each with 
small and normally distributed 
phenotypic effects.

Transcriptomic
The study of the expression 
levels of all transcripts in a cell.

Epigenomic
The study of all epigenetic 
modifications of a cell, 
including DNA methylation and 
histone modifications, which 
are largely responsible for the 
genes expressed in a specific 
tissue at a given developmental 
stage or metabolic state.

Homeostasis model 
assessments
A method based on fasting 
measures of glucose and 
insulin levels that is used to 
estimate β-cell function or 
insulin resistance.

Thus, additional T2D loci will probably be discovered 
mostly by continued increases in the size and diversity 
of common-variant GWAS, incorporating new popula-
tions, additional phenotypes72,73 and new resources for 
genotype imputation74,75. The collaborative networks and 
centralized analysis plans of GWAS consortia, refined 
over the past half-decade, will probably play a key part in 
the organization of these efforts.

Understanding disease biology
Characterizing the alleles that contribute to population 
disease risk is only one goal of genetic studies (BOX 1). 
Arguably more consequential is using the mapped associ
ations to develop and test hypotheses about disease biol-
ogy. Progress towards this latter goal has been variable, in 
part because experiments to understand the molecular, 
cellular and physiological mechanisms behind an associ-
ation are typically highly domain-specific and thus are less 
systematized than the analysis protocols now deployed in 
GWAS. Moreover, the opportunity to use genetic findings 
to validate or disprove hypotheses from animal or cellular 
models is often impeded by the cumbersome access to 
results and opaque language of genetic studies.

Recent biological and clinical studies increasingly 
suggest one possible means to increase the translational 
use of human genetic findings: through convergence 
on common resources and workflows (FIG. 2; TABLE 1). 
Paradigms have begun to emerge for investigations of 
physiological mechanisms through deep patient pheno
typing and stratification; for the analysis of potential 
causal variants and effector transcripts through the use 
of genetic, transcriptomic and epigenomic maps; and for the 
elucidation of molecular or cellular mechanisms through 
functional experiments, new techniques and genomic 
resources.

Physiological investigations. To gain physiological 
insight into T2D associations, many studies have investi
gated the many T2D‑related phenotypes that are available 
in large numbers of genotyped samples. Analysing 31 
T2D‑associated variants for associations with homeostasis 
model assessments of β-cell function (HOMA‑B) or insu-
lin resistance (HOMA‑IR) produced early evidence that 
most T2D variants increase risk through pancreatic β-cell 
dysfunction27. Ensuing similar approaches have defined 
finer-grained clusters of T2D‑associated variants76, 

Box 1 | Population risk versus biologically relevant variants and genes

Genetic studies use ‘experiments of nature’ — that is, naturally occurring variation — to characterize both the genetic 
basis of disease in the population (on which stratification for intervention might be predicated) as well as genes or 
biological pathways that might guide insight into disease processes. These two goals are in many senses complementary: 
identifying most variants responsible for disease provides a catalogue of disease-relevant genes, and variants of 
disproportionate impact in the population may point to pathways of disproportionate relevance to disease. However, 
insight into disease biology is not predicated on a complete description of the genetic basis of disease, nor does 
explanation of heritability in the population necessarily lead to improved biological understanding.

These distinct goals thus lie at the heart of one notable debate in recent years: the degree to which genome-wide 
association studies (GWAS) have been ‘successful’. One interpretation of the first GWAS findings for type 2 diabetes 
mellitus (T2D) and other complex diseases was a focus on ‘missing heritability’: that is, the inability of GWAS findings 
to explain most of the genetic risk of disease in the population or to provide sufficient prognostic or stratifying 
information13,38. The modest effects of common variants, responsible for the limited fraction of heritability explained, 
were claimed to provide limited insight into disease biology, and rarer variants were claimed to offer a more profitable 
explanation for the remaining genetic basis of disease13.

GWAS, however, were not designed to explain the entirety of disease heritability but rather to identify the subset of 
variants that by chance may have reached common frequencies in the population15. The identification of some — let 
alone many — such variants offered key insights into T2D biology, such as the confirmation that most risk variants act 
through reduced β-cell function or mass, rather than many other previously hypothesized pathways27, and the 
demonstration that most molecular mechanisms of disease risk are regulatory110,113,162. Furthermore, the effects of genetic 
variants are constrained by population history and natural selection, suggesting that stronger perturbations of the same 
or different genes in a common pathway might lead to larger phenotypic effects. In this sense, rare variants can be of 
great value, even if they in fact explain less heritability than common variants: for example, the finding of protective rare 
loss‑of‑function variants in SLC30A8 (REF. 58), which explained less heritability than the common variant by several 
orders of magnitude36, nonetheless provided an important suggestion about the direction of disease risk from protein 
inactivation. Similarly, KCNJ11–ABCC8 and PPARG exemplify viable drug targets that could, in principle, have initially 
been identified by modest-effect common-variant associations6,7.

Conversely, recent studies that have succeeded in explaining missing heritability have not necessarily led to increased 
biological insight. Polygenic score47 and mixed linear modelling36 analyses have shown that GWAS variants in fact ‘tag’ 
most T2D heritability, but these analyses by design do not identify specific variants from which biological insight might 
be derived. Furthermore, an explanation of disease heritability does not imply an accurate model for disease risk 
prediction97,98, as the environmental component of T2D risk introduces substantial and inherent noise. Similarly, 
characterizing the genetic architecture of T2D — or the number, frequencies and effect sizes of variants that contribute 
to heritability — is, in some senses, easier than identifying specific causal variants and can greatly affect genetic study 
designs or genetic risk prediction.

Thus, the two goals of explaining disease heritability and identifying biologically relevant genes require, in many cases, 
distinct approaches by distinct communities. Diverse analyses of shared genetic data sets are one future route to 
empower both types of study.
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Figure 2 | Common resources, analyses and workflows for understanding T2D biology. Although investigations of 
biological mechanisms for type 2 diabetes mellitus (T2D) are typically highly context-dependent, in recent years common 
approaches have emerged. Example goals or lines of investigation (x‑axis) include ascertaining samples for genetic analysis 
(sample ascertainment), computing genotype–phenotype associations (associations), identifying genetic variant carriers 
(variant carriers), mapping T2D loci (mapped loci), identifying additional signals at mapped loci (additional signals), identifying 
the causal variant for an association signal (causal variant), identifying the transcript that mediates an association (effector 
transcript), elucidating the directional relationship between molecular activity and disease risk (direction of risk) and 
understanding or identifying T2D‑relevant biological processes (biological processes). Example resources (y‑axis) include deep 
human phenotypic measurements (deep phenotyping), catalogues of associations reported from genome-wide association 
studies (GWAS association results), genotypes at select variants (genotype data), full sequence data (sequence data), 
catalogues of transcript expression (transcript expression), catalogues of epigenomic marks (epigenomics), measurements 
of cross-species conservation (evolutionary conservation), networks of gene–gene or protein–protein interactions (PPIs) or 
associations (networks) and experimental results from model systems (cellular and animal models). Analyses that use a class 
of resource to address a specific question are shown as boxes; examples of these analyses are described in TABLE 1. Three 
common workflows, or series of analyses, are indicated by sets of arrows between boxes. An example ‘forward genetics’ 
workflow (dark grey) carries out a GWAS of T2D cases and matched controls, identifies new loci and then predicts causal 
variants (by fine mapping and mechanistic prediction from epigenomic annotations) or effector transcripts (by analysis of 
expression quantitative trait loci (eQTLs)). An example ‘reverse genetics’ workflow (light grey) investigates the function of a 
candidate gene by identifying carriers of high-impact variants and analysing their phenotypes. An example ‘target validation’ 
workflow (red) identifies a potential target through association analysis for a specific disease subtype (by stratifying individuals 
based on a range of phenotypic criteria) and then uses additional genetic and experimental analyses to inform the directional 
relationship between molecular and phenotypic effect, a therapeutic ‘dose–response’ curve and effects of target perturbation 
on a range of deeper phenotypes. GSEA, genome set enrichment analysis; LoF, loss of function; PheWAS, phenome-wide 
association study; RVAS, rare variant association study; TFBS, transcription factor binding site.
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Table 1 | Example analyses for understanding T2D biology

Goal Analysis Description/rationale Examples

Sample 
ascertainment

Phenotype clustering Stratification of samples to identify 
variants for disease subtypes

Ascertainment based on T2D‑related phenotypes89 
or high-dimensional EMRs91

Case–control analysis Classic association analysis Most GWAS65 or sequencing studies62

Genetic risk score 
analysis

Measure aggregate effects of all 
variants carried by a patient

Weighted scores from GWAS variants for T2D97 or related traits78,98

Epigenomics profiling Use epigenomics rather than 
genetics to stratify patients

Prediction based on blood methylation levels96

Associations PheWAS Test for association with all available 
phenotypes for a given variant

Associations with T2D‑related traits27,104; glucose tolerance tests164; 
fasting versus 2‑hour post-OGTT69; glucose monitoring165; insulin 
sensitivity and signalling87; body mass distribution78

GWAS results Standard output of a GWAS Variants reaching genome-wide significance in T2D GWAS65

Single-variant tests More nuanced association tests not 
typical of a standard GWAS

Replication of preliminary single-variant associations51,58; custom 
analyses89; custom conditional analyses62,90; recessive models69

Gene-level tests Aggregate association analysis, 
commonly used in RVAS

Aggregate LoF tests58; tests of functional variants56,57

eQTLs Associations with transcript levels eQTL analysis of islet RNA-seq data119,120

Epigenetic association 
tests

Associations with epigenomic 
differences

Methylation differences between cases and controls96,122,124,125 
or monozygotic twins124,125

Variant 
carriers

Single-variant carriers Carriers of a specific variant Identification of low-frequency variant51,104or homozygous variant 
carriers69

Gene mutation 
carriers

Carriers of any variant meeting 
specified criteria within a gene

Diagnostic mutation screening87,165

Mapped loci GWAS loci The loci identified by GWAS Reported from common variant GWAS27,36,65

RVAS loci The genes identified by RVAS Reported from RVAS51

Additional 
signals

Conditional analysis Used by GWAS or fine mapping to 
identify multiple signals at a locus

Conditional analysis on GWAS signals62,70,102

Allelic series Identify variants of a range of effects Aggregate rare variant analysis for known genes56–58 or gene 
sets62,99

Allelic 
characterization

Functionally validate and calibrate 
the effects of an allelic series

Missense variant screening with functional assays56,57

Causal variant Credible sets Localize common variant association 
to individual variant

Credible set analysis of European105 or multi-ethnic samples65, 
using dense genotyping102 or sequencing62

Candidate 
enumeration

Use sequence data to ensure all 
variants analysed for credible set

Candidates from 1000 Genomes Project74 or large-scale 
sequencing62

Regulatory element 
overlap

Prioritize variants based on 
predicted regulatory effect

Enrichment of epigenomic annotations102,110,111,113–116 or causal 
variant prioritization102,115,127,129,135,136

Co‑inherited TFBS Novel method to use evolutionary 
patterns to predict causal variant

Phylogenetic conservation of co‑occurring TFBS138

Gene editing, allelic 
function

Verify variant effect on regulatory 
landscape or expression

Allele-specific reporter assays102,113,115,116,129,135,136 
or EMSA102,113,129,135,136; CRISPR127,138

Effector 
transcript

Pleiotropy Effects on multiple traits can 
hypothesize effector transcript

Multiple variants near RREB1 associated with related traits62

High-impact variants Elevated prior likelihood of causality Missense variant associations in TM6SF2 (REF. 62), PPARG6 
or SLC30A8 (REF. 19)

Coincident eQTLs Technique used to suggest 
regulatory effect of association

Association coincident with eQTL from public data sets19, 
custom data sets51,126,127,131 or islet RNA-seq120; allelic expression 
profiling128,129

Synteny Co‑inheritance of variant and gene Conserved genomic regulatory blocks130

Knockout, knockdown, 
overexpression

Experimentally measure effects of 
gene perturbation

Gene overexpression or knockdown in human cell126,127 or mouse 
models127

Direction 
of risk

LoF mutations Observe ‘human knockouts’ Effect of gene inactivation58

eQTL directionality Altered regulation in humans Direction of expression change51,120

Knockouts, assays Effect of knockout in model systems Inference from cellular126,127 or animal phenotypes127
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Mendelian randomization
A technique that uses genetic 
variation to infer causal 
relationships between 
correlated phenotypes.

Fine mapping
An approach to localize 
common variant association 
signals to potentially causal 
variants, using exhaustive 
candidate enumeration 
and genotyping in large  
case–control samples.

classified glycaemic trait associations77,78 and assessed 
cellular phenotypes79. Recently, Mendelian randomization80 
has gained favour as an approach to evaluate causal rela-
tionships between T2D‑relevant endophenotypes or 
biomarkers, supporting causality between body mass 
index (BMI)81 or bilirubin levels82 and T2D, but rejecting 
causal relationships between triglyceride83, high-density 
lipoprotein (HDL) cholesterol84, adiponectin85 or uric 
acid86 levels and T2D.

For some genes, deeper phenotyping of variant car-
riers has led to quite specific mechanistic insights. For 
example, insulin resistance measures and muscle and 
fat biopsy samples of PTEN mutation carriers demon-
strated a link with T2D via enhanced phosphatidyl
inositol 3‑kinase (PI3K)–protein kinase B (PKB; also 
known as AKT) pathway signalling and hence increased 
insulin sensitivity87. Similarly, in the study that identi-
fied a common but large-effect Inuit-specific T2D 
variant in TBC1D4, access to measures of fasting and 
2‑hour post-oral glucose tolerance test (OGTT) glu-
cose and insulin showed an association with glucose-
stimulated insulin secretion but not with fasting levels of 
glucose69. This finding is consistent with mouse models 
and a proposed mechanism of action related to glucose 
uptake by skeletal muscle in the post-prandial setting88.

These distinct phenotypic spectra support a per-
spective widely held by clinicians, who contend with the 
heterogeneity of T2D on a daily basis, of the existence of 
distinct T2D subtypes. Indeed, stratification of patients 
into more homogeneous subgroups has produced novel 
associations, such as near LAMA1, through analysis of 
lean T2D cases89 or additional associations with insu-
lin after controlling for BMI90. The striking difference 
in association strength between homozygous TBC1D4 
variants and T2D as defined by glycated haemoglobin 
levels (P = 0.008) versus World Health Organization 
standards (P = 1.6 × 10−24) further emphasizes how 
phenotype definition can affect association results69. 
In addition, attempts to formalize specific disease clus-
ters have begun to yield fruit91, while intriguing recent 
studies have suggested novel markers, such as somatic 
clonal mosaic events (CMEs)92, the gut microbiome93, 

metabolite levels94,95 or epigenomic marks96, to predict 
or classify T2D subtypes. The clinical benefit of genetic 
scores to predict diabetes risk, however, remains mod-
est at best, not only for T2D97,98, but also for monogenic 
forms of diabetes mellitus99. By contrast, genetic risk 
scores for type 1 diabetes, in which the HLA region 
explains a substantial portion of heritability, have proved 
useful to distinguish type 1 from monogenic diabetes100 
or even T2D101 in specific clinical scenarios.

Prediction of causal variants and effector transcripts. 
To link predicted physiological mechanisms to causal 
variants or effector transcripts that mediate a T2D 
association, the first step is typically to fine-map the 
locus in large sample sizes. Fine mapping starts with 
conditional analysis to determine the number of inde-
pendent signals at the locus. Some loci, in fact, harbour 
a substantial number of signals (for example, five at 
the KCNQ1 locus)102, which can collectively discern 
independent risk and protective signals (at the 9p21 
locus)103 or resolve directional relationships between 
different phenotypes (such as T2D and glucose at the 
G6PC2 locus)53. Additional signals can also implicate 
effector transcripts51 or highlight new phenotypic associ
ations51,104, both of which are exemplified by a second 
association at the CCND2 locus51.

For each signal, fine-mapping approaches then 
construct credible sets105 that quantify the likelihood 
of causality for each variant. Large-scale analyses have, 
in some cases, identified a single causal candidate with 
near certainty, such as at the CDKN2A–CDKN2B65 or 
MTNR1B102 loci. In addition, the transferability of associ-
ations between ethnic groups46,65,68 can enable multiethnic 
fine mapping studies to increase credible set resolution 
through differential  linkage disequilibrium patterns: for 
example, at the JAZF1 locus65. Large sample sizes, as well 
as comprehensive catalogues of variation from efforts 
such as the 1000 Genomes Project74, are crucial to the 
success of fine mapping62.

Among the variants that are identified by fine map-
ping, perhaps the most valuable are coding variants 
that have a clear molecular impact on protein function. 

Table 1 cont. | Example analyses for understanding T2D biology

Goal Analysis Description/rationale Examples

Biological 
processes

Physiological 
processes

Understanding of physiology from 
patient investigation

Insight from carrier phenotypes69,78,87,164,165

GSEA Pathways enriched for GWAS 
variants

Commonly reported in GWAS27,36

Aggregate tests Tests of variants across gene set Aggregate variant effects in monogenic genes62,99

Regulatory networks Infer networks from variant 
perturbations of expression patterns

Trans-eQTL analyses133 or enrichment132

Co‑expression, PPIs Use interactome to organize variants Networks to rank genes146 or test hypotheses145

Hypotheses, 
candidate genes

Classic functional studies and 
starting point for ‘reverse genetics’

Experiments based on biological hypotheses142–144

Listed are examples of commonplace analyses, depicted in FIG. 1, to gain insight into T2D biology. For each line of investigation (first column) and analysis (second 
column) depicted in FIG. 1, listed is a more specific description of the analysis (third column) and examples, not intended as comprehensive, from the literature 
(fourth column). EMR, electronic medical record; EMSA, electrophoretic mobility shift assay; eQTL, expression quantitative trait loci; GSEA, gene set enrichment analysis; 
GWAS, genome-wide association study; LoF, loss of function; OGTT, oral glucose tolerance test; PheWAS, phenome-wide association study; PPI, protein–protein 
interaction; RNA-seq, RNA sequencing; RVAS, rare variant association study; TFBS, transcription factor binding site; T2D, type 2 diabetes mellitus.
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Protein-truncating variants
Variants, such as nonsense, 
frameshift, readthrough or 
splice site mutations, that 
lead to incomplete protein 
sequences and possibly 
non-functional proteins.

Expression quantitative 
trait loci
(eQTLs). Associations 
between a genetic marker and 
expression levels of a transcript.

cis-eQTLs
Expression quantitative trait 
loci (eQTLs) on the same 
chromosome and typically 
near the location of the gene 
that encodes the associated 
transcript.

trans-eQTLs
Expression quantitative trait 
loci (eQTLs) in a different 
chromosome from the gene 
encoding the associated 
transcript.

Common coding variants in linkage disequilibrium with 
T2D associations have an elevated prior likelihood of 
causality and facilitate hypotheses about effector tran-
scripts, such as for RREB1 at the RREB1–SSR1 locus and 
TM6SF2 at the CILP2–TM6SF2 locus62. An allelic series 
of coding variants can provide further insights into gene 
function. For SLC30A8, the identification of protective 
protein-truncating variants hypothesized an unsuspected 
relationship between decreased, rather than increased, 
activity and T2D protection58. In genes for monogenic 
forms of diabetes62,99, rare risk-increasing coding variants 
suggested mechanistic links between T2D and compara-
tively well-understood Mendelian disease processes62,101. 
For MTNR1B56 or PPARG57, the ability to functionally 
discriminate T2D‑associated from neutral variants pro-
vided a potential foundation to develop disease-relevant 
assays for therapeutic development106.

Resources for prioritization of causal non-coding 
variants. Credible sets for most T2D associations do not 
include coding variants. Instead, they span non-coding 
regions of the genome and suggest causal variant regu-
latory effects. Although early fine-mapping studies103,105 
had limited access to noncoding functional annotations, 
efforts such as the ENCODE107, Epigenomics Roadmap108 
and GTeX109 projects have since provided reference regu
latory landscape maps of numerous human tissues. 
Indeed, GWAS variants have since been shown to cluster 
within regulatory elements110,111, and T2D‑associated vari-
ants show the strongest localization to islet enhancers112,113. 
More recent studies have also shown enrichment of 
T2D‑associated variants within transcription-factor bind-
ing sites, most notably for forkhead box A2 (FOXA2) in 
islets102 and PPARγ in fat114.

To further capture the range of developmental 
stages and metabolic states of specific relevance 
to T2D pathophysiology, numerous smaller-scale 
efforts have increasingly characterized the pancreatic 
islet regulatory landscape along multiple axes. Early 
formaldehyde-assisted isolation of regulatory elements 
sequencing (FAIRE–seq), DNase sequencing (DNase–
seq) and chromatin immunoprecipitation followed 
by sequencing (ChIP–seq) studies identified thousands 
of islet-selective open chromatin  regions115 and regula-
tory elements116. RNA sequencing (RNA–seq) transcrip-
tome maps have since catalogued long non-coding RNAs 
(lncRNAs)117, microRNAs118, and expression quantitative 
trait loci (eQTLs)119,120 that are specific to pancreatic 
islets or β-cells121. Islet methylation profiling has been 
carried out in patients with T2D122,123 and monozygotic 
twin pairs124,125. Progress has also been made towards 
integrated catalogues of these resources, identifying 
regulatory element clusters that are of high relevance to 
islet function112,113.

Experimental investigation of molecular and cellular 
risk mechanisms. These new epigenomic and tran-
scriptomic resources have helped to guide functional 
experiments for many T2D GWAS loci. To support 
hypothesized effector transcripts, genotype-dependent 
expression can provide key evidence, as exemplified by 

studies of the ADCY5 (REF. 126) and FTO127 loci. T2D 
GWAS thus routinely investigate whether new signals 
coincide with cis-eQTLs27,36,65: these analyses are limi
ted by the tissues available in public data sets but can 
be successful, for example at the KLF14 (REF. 27) locus. 
Analyses of eQTLs in custom data sets, such as pancre-
atic islets, have shown further success, predicting and 
experimentally validating ZMIZ1 as a gene involved in 
glucose homeostasis120.

Alternatives have been used to address limitations 
of cis-eQTL mapping, such as potential environmental 
confounders or restrictions to transcripts near the ori
ginal signal. Allelic expression profiling is less frequently 
subject to confounders and has been used in some 
studies128, for example, to implicate ARAP1 (REF. 129) as 
an effector transcript (although more recent studies of the 
locus provide evidence in favour of STARD10 (REF. 120)). 
Mapping of chromatin interactions has been used to 
identify longer-range eQTL relationships, exemplified 
by implication of the megabase-distant IRX3 transcript 
at the FTO locus127,130,131. Finally, trans-eQTLs can be a 
valuable resource to investigate global regulatory effects 
of T2D‑associated variants132, showing, for example, 
that KLF14 affects multiple metabolic traits as a master 
trans-regulator of adipose gene expression133.

In analogy to transcriptomic maps hypothesiz-
ing effector transcripts, epigenomic annotations have 
proven valuable in hypothesizing causal variants. An 
early example was a variant near TCF7L2, which was 
shown to lie within islet-selective open chromatin115 and 
later an islet-specific enhancer113. This variant suggested 
that allele-specific reporter assays could be used in β-cell 
lines115,116 to confirm a previously suggested134 β-cell-
specific risk mechanism. Variants within predicted islet 
enhancers at the ZFAND3 (REF. 113) and MTNR1B102 loci 
have also been verified to have an impact on enhancer 
activity; in both cases, islet transcription factor bind-
ing site (TFBS) maps motivated further experiments 
to verify a molecular mechanism of decreased neuro-
genic differentiation factor 1 (NEUROD1) binding102,113. 
Similarly, at the JAZF1 (REF. 135), CDC123–CAMK1D136, 
ARAP1 (REF. 129) and FTO127 loci, maps of open chroma-
tin prioritized variants subsequently tested for enhancer 
activity, allele-specific expression and transcription 
factor binding.

Other functional experiments show the increasingly 
diverse genomic resources used in mechanistic charac
terization. Imprinting patterns led to predictions of 
effector transcripts at the KCNQ1 locus137 and potential 
explanations for seemingly conflicting phenotype associ
ations at the GRB10 locus73. Patterns of cross-species 
conservation predicted IRX3 as the effector transcript at 
the FTO locus130 and a regulatory variant as causal at the 
PPARG locus138. Elucidation of a molecular, cellular and 
physiological mechanism that underlies obesity risk at 
the FTO locus127 demonstrates to date perhaps the most 
comprehensive use of genomic information in a func-
tional setting: epigenomic annotations guided enhancer 
assays to suggest adipocyte precursors as the affected cell 
type; long-range chromatin interactions guided eQTL 
experiments to predict IRX3 as the effector transcript; 
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CRISPR–Cas9 editing
A technique for precise and 
efficient editing of genetic 
information within a cell.

Interactome
The study of all protein–
protein interactions in a 
system.

co‑expression and trans-eQTL analysis guided cellular 
phenotyping, gene perturbation and mouse models to 
predict adipocyte browning as a cellular mechanism; 
and cross-species conservation of TFBS patterns guided 
CRISPR–Cas9 editing to predict the causal variant.

These recent experiments thus augment more trad
itional functional investigations of genetic associations, 
such as using gene knockdown to validate ATM in met-
formin response29, mouse models to investigate CDKAL1 
(REF. 139), mRNA expression analysis to study the tissue 
of action for SLC2A2 (REF. 140), or biochemical assays 
to study the function of GCKR141. Conversely, genetic 
associations and genomic resources can also be used to 
test predictions that were originally made by functional 
studies; for example, a prediction from mouse adipose 
tissue that variants in PPARγ-binding DNA elements 
account for strain-specific expression patterns and drug 
responses was tested through enrichment of metabolic 
trait associations within human PPARγ-binding ele-
ments114. Other predictions from mice, such as the rele
vance of Rfx6 (REF. 142), the Lin28–let‑7 pathway143 and 
Imp2 (REF. 144) to glycaemic traits or diabetes, could also 

be investigated through phenotypic analysis of human 
mutation carriers. The same can be said for predictions 
from functional genomic approaches, such as interactome 
analysis145,146 or knockout screens from new assays147.

A need for a public T2D genetics knowledge base
The state of genetic mapping and functional studies for 
T2D highlight two different but complementary trends. 
The need for larger consortium-led GWAS and sequen
cing studies will produce centralized analyses of large 
genomic data sets. The need for increasingly diverse and 
specialized approaches to investigate these findings will 
produce a need for common genomic resources. And 
yet, today, the value of genetic data sets is only partially 
realized. For example, protective loss‑of‑function muta-
tions in SLC30A8 were undetected in a consortium-led 
genome-wide analysis of 13,000 exomes62 and only 
identified after years of focused genetic and functional 
follow up58.

For the biological community to make fuller and 
more intelligent use of the data produced by genomics 
consortia, barriers must be removed. Current consortia 

Table 2 | Potential users of an integrated T2D knowledge base

Statistical 
geneticists

Biologists (informed by 
genetics)

Biologists (uninformed 
by genetics)

Pharmaceutical 
researchers

Clinicians

Major 
goals

•	Identify novel 
associations

•	Explain heritability

Elucidate molecular, 
cellular and physiological 
mechanisms of association

Examine human genetic 
support for hypothesis 
from model system or 
pathway

•	Identify potential novel 
targets

•	Obtain support for targets 
from human genetics

Estimate 
phenotypic effect 
for variant of 
interest

Relevant 
data sets

•	Large collections 
of genotype and 
sequence data

•	Basic phenotypes

•	Association catalogue
•	Credible set results
•	Epigenomic and 

transcriptomic data sets

•	Coding variation
•	Annotation of 

functional impact
•	Rich phenotypes

•	GWAS associations
•	Coding variation
•	Annotations
•	Rich phenotypes

•	Large sequence 
datasets

•	Rich phenotypes

Typical 
workflow

Carry out novel 
association analysis 
on entire body of 
data

Examine overlap of 
functional annotations with 
variants in credible set

Identify high-impact 
variants in gene of 
interest and test for 
association with range 
of phenotypes

•	Predict causal gene, 
directionality from GWAS 
signal

•	Assess phenotypic 
associations for LoF 
variants in gene of interest

Obtain variant 
frequencies in 
individuals with 
various phenotypes

Preferred 
interface

•	Programmatic APIs
•	Exploratory 

‘sandbox’

Visualizations or genome 
browser within a portal

Query builders and 
analysis modules within 
a portal

•	Portal with support for 
workflows

•	Programmatic APIs

•	Simple portal
•	Programmatic 

APIs

Knowledge 
of genetics

Expert Intermediate Basic or none Basic or intermediate Basic

Needed 
curated 
content

Description of 
methods applied to 
data and results

•	Qualitative interpretation 
of statistics

•	Potential caveats
•	Knowledge relevant to 

gene or pathway

•	Guide for workflow 
to run

•	Relevant statistics and 
their interpretation

•	Potential caveats

•	Summary of validated 
genetic results

•	Qualitative interpretation 
of statistics

Documentation 
of ascertainment 
protocol and 
phenotypic 
measurements

Type of 
finding 
made 
possible

LoF variants in 
SLC30A8 (REF. 58)

Causal variants, effector 
transcripts or mechanisms 
at MTNR1B102 or ZMIZ1 
(REF. 120) loci

Associations with T2D for 
mutations in LIN28–let‑7 
(REF. 143) pathway or 
PPARγ binding sites114

Protective LoF variants in 
SLC30A8 (REF. 58), assay 
calibration with PPARG 
variants57, deep phenotyping 
of PTEN variant carriers87

Investigation 
of phenotypic 
effects of variants 
in monogenic 
diabetes genes99

Many communities might benefit from analyses that can be carried out on integrated genomic data sets. The table shows five potential user groups that might find 
use from a type 2 diabetes mellitus (T2D) knowledge base, together with their major analytical goals, data sets of high relevance, an example workflow that might 
be supported, the preferred interface to the knowledge base, the expected level of genetics expertise, the curated content that might be necessary to augment 
the analysis and the type of finding that a knowledge base might facilitate in the future. The groups listed are statistical geneticists who typically carry out 
genome-wide association studies (GWAS) or complex genetic association analyses, biologists who aim to translate genetic associations into mechanistic insight, 
biologists who investigate hypotheses from animal or cellular models, pharmaceutical researchers who seek to identify or prioritize targets based on human 
genetics, and clinicians who seek to interpret genetic variants identified in patient genome sequences. Both the examples and classification of users are simplistic 
and not intended to be comprehensive. Furthermore, a typical researcher may in reality move between different user groups depending on the line of research. 
API, application programming interface; LoF, loss of function; PPARγ, peroxisome proliferator activated receptor-γ.
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settings are seldom the ideal context for producing the 
analyses required for any specific experiment; although 
custom analyses can be requested, disparate data set 
locations and multiple analysts can make it challenging 
to compute results in the most rigorous and expedited 
fashion. Furthermore, experimentalists or other ‘con-
sumers’ of genomic data have varied levels of exper-
tise and may be unable to interpret current analytical 
practices (TABLE 2).

The increased convergence of experimental 
approaches and resources, however, suggests that many 
investigators could benefit from access to genomic data 
sets through a tractable number of user-friendly work-
flows. A logical mechanism, recently embraced by the 
wider T2D community148, is a web-based portal to an 
integrated T2D genetics knowledge base, designed 
explicitly to aid translation of association results to bio-
logical insights. Other genotype–phenotype databases 
have become commonplace, most notably for Mendelian 
diseases149,150, and the inherent challenges in building 
and supporting them are well reviewed elsewhere151. 

Additional reference epigenomic107,108, transcriptomic109 
and genetic152 data sets commonly used in functional 
experiments are also increasingly available through 
public web portals: in some cases through integrated 
analyses153,154.

To facilitate functional studies of T2D loci, a portal 
must be designed to support experimentalists, rather 
than to serve as a repository for consortium-produced 
results (FIG. 3). This will require increased interactivity, 
data drawn from multiple interconnected sources and 
access to on‑demand analyses of sensitive genotype 
and phenotype data. Such a portal would forge new 
connections among GWAS consortia and experimen-
talists in the academic, government or private sectors, 
diversifying the downstream uses of genetic data sets.

Building a knowledge base
To realize the vision of a shared T2D knowledge 
base and portal (FIG. 4), several efforts offer insight. 
Modern portals, such as those for the GTEx or WashU 
Epigenome Browser projects, are increasingly interactive 

Nature Reviews | Genetics

• Primary outputs are analyses
    of integrated data sets

• Pre-computed and dynamic
    analyes of raw data available 

• Support for user-specific and
    rich workflows and APIs

• Information flow is
    bidirectional

• Primary outputs are curated
    results and raw data

• Intermediate results and raw
    data available

• Support for downloads and
    programmatic APIs

• Information flow is
    unidirectional   

• Primary output is published
    literature

• Only final results and
    analyses available

• Limited machine-readable
    information

• Information flow is
    unidirectional  

Publications Data repositories Interactive portals

Figure 3 | The evolution of human genetic knowledge bases. For experimentalists to make wider use of the analyses 
and data produced by genetics consortia (FIG. 1), new access mechanisms are necessary. Traditionally, the results 
produced by genome-wide association study (GWAS) consortia have been primarily accessible through publications, 
which list loci that meet stringent genome-wide significance. Catalogues of associations require manual curation from 
the literature. The left panel shows the flow of information from data producers (blue boxes on the left) to publications 
(white papers), which are then read by data consumers (pink boxes on the right). Over time, many studies have begun to 
make available a wider range of intermediate results alongside publications, such as files that contain associations for 
every analysed variant. Genomic resources commonly used in experiments to understand GWAS associations (FIG. 2) 
have also been made accessible through databases and portals. The middle panel shows a revised flow of information, 
in which not only published results but also intermediate analyses or raw data are made available through multiple 
knowledge bases (green cylinders). In the future, we argue that much more information could be extracted from genetic 
analyses if portals made available results as well as facilitated novel analyses on data sets integrated across multiple 
studies. The right panel shows a future flow of information, in which consumers of data specify complex analytical 
workflows, which are carried out on data within interconnected knowledge bases. By enabling a broad community of 
users to carry out custom analyses, progress towards understanding type 2 diabetes mellitus (T2D) biology may 
accelerate (shown by publications on the right). API, application programming interface.
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Business intelligence
A term, commonly used in 
business, that denotes a set of 
techniques for transforming 
raw data into meaningful 
insights.

Big data
A term for data sets that are 
so large or complex that new 
paradigms are needed to 
extract meaningful insights 
from them.

Data warehouses
A system for carrying out 
integrated analyses across 
multiple initially disparate 
data sources.

and responsive. Collaborations such as the exome 
aggregation consortium155 have pioneered approaches 
to aggregate raw sequence data from independent pro-
jects, whereas more aspirational efforts, such as the 
Global Alliance for Genomics and Health (GA4GH), 
seek to create standards and incentives for responsible 
genomic and clinical data sharing. Web platforms such 
as GenomeSpace and Galaxy156 allow a wide commu-
nity of (even non-expert) researchers to reproducibly 
carry out analyses, whereas tools such as the Michigan 
or Sanger imputation services and xBrowse allow 
secure upload and automated expert analysis of user 
data. Increasingly, new initiatives recognize the value in 
collaboration across prior boundaries, such as between 
industry and academia in the case of the Accelerating 
Medicines Partnership (AMP)157, Center for Therapeutic 
Target Validation (CTTV)158 and Innovative Medicines 
Initiative (IMI)159.

What is needed in order to exploit these trends to 
advance genetic or biological understanding of T2D? 
On the basis of recent T2D genetic studies, extremely 
large sample sizes will be necessary to map or to charac-
terize substantially more loci in the population62. Rich 
phenotype information will be needed for physiological 

characterizations, and additional epigenomic and trans
criptomic data sets will be necessary to support molec-
ular or cellular experiments. The foundational task for 
a T2D knowledge base is thus to support large-scale 
genetic data aggregation, harmonization and integra-
tion with other resources. Although ‘business intelligence’ 
approaches commonly address such challenges through 
‘big data’ analytics or ‘data warehouses’ (REF. 160), apply-
ing analogous computational techniques to human 
genetic data sets will require substantial research 
and investment.

As a T2D knowledge base will contain sensitive 
patient data, secure mechanisms will be necessary to 
enforce access to only consented data sets. Where regu
lations prevent transfer to a central location, federated 
databases — in which data reside locally but support 
central analyses — will need development. Incentives 
such as increased access to cutting-edge analytics or fair 
publication and data embargo policies must be developed 
to inspire investigators, who typically spend years or dec-
ades collecting patient data, to contribute to the know
ledge base for the sake of global discovery. Potentially, 
a shared knowledge base might enable entirely new 
categories of data sets, such as those from clinical trials 

Nature Reviews | Genetics

Producers of 
genomic data 

Additional 
workflow 
definitions

Example workflow 3:
Target validation

• Define a combination of
   phenotypes and covariates

• Identify associations

• Link associations to effector
   transcript via eQTLs or
   coding variants

• Identify loss-of-function variants
   and estimate directionality

• Identify allelic series and estimate
   dose–response relationship

• Perform PheWAS with variants
   to inform on side effects

Example workflow 2:
Reverse genetics

• Start with a gene

• Identify carriers of high-impact 
   variants

• Investigate association with
   all available phenotypes

• Define modified phenotype

• Perform dynamic association
   analysis with modified phenotype

• Test collections of high-impact
   variants for association

• Explore genes in same pathway

Example workflow 1:
Forward genetics

• Start with GWAS region

• Identify eQTLs

• Identify effector transcript
   and tissue

• Identify and view all
   independent signals

• Obtain credible set for any signal

• Overlay regulatory marks in that
   tissue over variants

• Identify additional coding
   variants in effector transcript  

Federated
knowledge base

Portal with
support for
workflows

AnalysisData
aggregation

Figure 4 | An integrated knowledge base of T2D genetics. An integrated knowledge base of type 2 diabetes mellitus 
(T2D) genetics requires a new approach to aggregate, analyse and democratize genomic data sets. The most foundational 
need is to encourage cohort investigators to share genotypic and phenotypic information. Where regulations permit, 
these data could be aggregated at a central location, whereas federated knowledge bases will be necessary to integrate 
data sets that must be kept at their original locations. To enable a broad community of users to access information within 
these data, the methods and approaches developed by genome-wide association study (GWAS) consortia must be 
systematically applied to compute the needed analyses, either ‘offline’ in advance or ‘online’ on demand. Interactive web 
portals are then necessary for users to access these results, probably through workflows that span multiple questions or 
analyses (FIG. 2). eQTL, expression quantitative trait locus; PheWAS, phenome-wide association study.
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with rich information on patient drug responses161, to 
be integrated with genetic association analyses for the 
first time.

Data sets in a knowledge base must be further ana-
lysed to produce broadly applicable results. Consortium-
developed methods and workflows for genetic association 
analysis must be made sufficiently robust and efficient 
to analyse large and diverse data set collections. ‘Offline’ 
analyses will need regular (and automatic, where possi-
ble) application to update pre-computed statistics, while 
‘online’ analyses will be needed for queries that cannot 
be pre-computed, such as novel patient stratifications 
to define homogeneous disease subtypes or aggregate 
association tests63 of custom variant sets from functional 
assays56,57. Some online analyses may be complex, offering 
an opportunity for users to create and share custom work-
flows with the community. Where necessary, standards 
or new approaches will be needed to extend the analyses 
offered by a knowledge base to a federated setting.

Association results will also require additional pro-
cessing to produce interpretable answers to biological 
queries. Statistical significance must be carefully con-
veyed to non-technical investigators to limit both type 1 
errors, which arise from the multiple testing burden of 
‘online’ analyses, and type 2 errors, which arise from 
false equation of absence of evidence with evidence of 
absence. Analyses from the knowledge base should also 
be packaged to suggest actionable hypotheses or worth-
while experiments, such as affected cell types or ranked 
lists of causal variants. Ideally, researchers who investi-
gate these hypotheses should be encouraged to contribute 
their experimental results back to the knowledge base to 
empower future analyses by others.

Finally, these data and analyses must be made avail-
able through a public portal. Analytical results will need 
accompanying summaries and visualizations that answer 
simple but specific biological questions. Users will need 
the capabilities to carry out interactive workflows and 
have the ability to save work or rerun analyses reprodu
cibly even if the underlying data are updated. Clear doc-
umentation and educational content must accompany 
the data and methods and must be tailored to a broad 
community with varied levels of expertise.

In summary, an ideal T2D knowledge base must be 
comprehensive, secure, compliant, automated and rigor
ous, yet also interpretable and inviting. If successful, it 
would greatly enhance the value of genetic association 
studies by generating a synergistic link between a net-
work of data contributors and a community of experi
mentalists. It can therefore not only serve as a central 
repository of a large trove of genomic information but 
also aspire to ‘democratize genetics’ to the global commu-
nity, thus becoming a transformative engine for discovery 
and paradigm for other disease fields.

Conclusions
Two trends have emerged from the study of T2D genet-
ics in recent years. First, evidence has mounted that T2D 
genetic architecture is likely to be polygenic and charac-
terized by many loci that are detectable only in hundreds 
of thousands of samples, arguing that larger and larger 
collections of genetic data will be necessary to discover 
disease-relevant variants in the population. Second, the 
increasing number of genes or processes that are linked to 
T2D will only increase the diversity of approaches neces-
sary to translate these associations to mechanistic insight, 
although common resources and workflows have begun 
to emerge.

We have argued that a T2D knowledge base and portal 
could exploit both of these trends and create additional 
value from the consortium-led analyses that will probably 
continue to be the main paradigm for genetic mapping. 
Through an interactive portal that connects researchers 
around the world, the current — mostly unidirectional 
— flow of information from genetic discovery to func-
tional characterization may one day be augmented by a 
cycle in which functional experiments inspire additional 
genetic experiments as well. One such portal, the Type 2 
Diabetes Knowledge Portal, represents the efforts of over 
100 investigators to increase access to genetic analyses of 
tens to hundreds of thousands of samples. Whatever the 
means to facilitate collaboration, a diverse collection of 
communities using increasingly common resources will 
be necessary to continue to advance our understanding 
of T2D biology and help one day to improve patient 
treatment and outcomes.
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